Psychrometrics

Scott Laurila ~ Senior Application Engineer Greenheck Fan Corporation Schofield, Wisconsin

Agenda

- Properties of Air
- The Psychrometric Chart
- Applications
 - □ Mixed Air
 - □ Cooling
 - Dehumidification
 - □ Energy Recovery

Course Objectives

- At the completion of this session, you should be able to use a Psychrometric Chart to:
 - □ Identify the properties of air at a given state condition
 - Illustrate the performance characteristics of basic heating and cooling processes
 - Demonstrate how the use of Energy Recovery devices can reduce heating and cooling loads in building designs

Psychrometrics

- <u>Psychrometrics</u> is the science dealing with the physical laws or air – water mixtures
- Important in the design of HVAC systems as numerous air properties can be found over a broad range of conditions

- Properties of Air
 - □ Dry-Bulb Temperature
 - □ Wet-Bulb Temperature
 - □ Dew-Point Temperature
 - □ Relative Humidity
 - □ Humidity Ratio
 - □ Enthalpy
- If any two of the above properties are known, the Psychrometric Chart can be used to find the remaining properties

- <u>Dry-bulb temperature</u> is the temperature read from a standard thermometer
 - Representative of the *sensible heat energy* at the given condition
- <u>Wet-bulb temperature</u> is read from a thermometer with the bulb covered by a wet wick

□ "Sling Psychrometer"

 Difference between dry-bulb and wet-bulb represents the dryness of air

- <u>Dew-point temperature</u> is the temperature at which moisture leaves the air and condenses on objects
- When the dry-bulb, wet-bulb, and dew-point temperatures are equal, the air is *saturated*
 - □ Fog occurs when the air is saturated

- Relative humidity is the measure of how much moisture the air is holding versus how much moisture the air can hold *at a given dry-bulb temperature*
 - □ Expressed as a percentage
 - □ As the dry-bulb temperature increases, the amount of moisture the air can hold increases

Relative Humidity =	Amount of moisture the air is holding
	Amount of moisture the air can hold

- <u>Humidity Ratio</u> is a measure of the weight of water in a given amount of air
 - □ Also referred to as Specific Humidity
 - □ Can be expressed in *grains*
 - □ 7,000 grains equals one pound of water

Humidity Ratio =	Pounds of moisture		
	Pounds of dry air		

The Psychrometric Chart

Dry-Bulb Temperature

Wet-Bulb Temperature

13

Dew-Point Temperature

Relative Humidity

15

Sensible and Latent Energy

- <u>Sensible Energy</u> is the heat that causes changes in the air's dry bulb temperature
- Latent Energy is the heat associated with phase change. It is representative of changes in the air's moisture content with no change to the dry-bulb temperature
- <u>Enthalpy</u> is the total energy in a given amount of air at its present conditions

Enthalpy (*h*) = Sensible Energy + Latent Energy

Enthalpy

18

Psychrometric Chart Reconstructed

Air Density Corrections

- Do <u>NOT</u> forget about elevation!
- Above 2,000 feet elevation, the air density is reduced by approximately 3.6% per every 1,000 feet
- A change in air density also changes the physical and thermodynamic properties of air-water mixtures

Psychrometric Processes

Psychrometric Processes

23

Mixed Air Conditions

- Step 1: Identify outdoor condition, indoor condition, and ventilation rate (% outside air)
- Step 2: Draw a straight line between the outdoor and indoor conditions
- Step 3: Draw a straight line between points 1 and 2

Mixed Air Example

Cooling Process Example

Cooling Coil Processes

Capacity (Btu/hr) = $4.5 \times \text{SCFM} \times \Delta h$

 \rightarrow 1 Cooling Ton = 12,000 Btu/hr

Cooling Exercise

- Exercise 2: A customer wants to cool 4,000 SCFM of outside air from 93°F DB / 65° WB to 50°F saturated air
- Find the following parameters for 50°F saturated air:

Property			
Relative Humidity			
Dew Point			
Humidity Ratio			
Enthalpy			

What is the <u>change in enthalpy</u> from 93DB/65WB to 50DB/50WB?

 $\rightarrow \Delta h = 10.9$ Btu / lb dry air

Determine the cooling tonnage required in this process.

 → Capacity = 16.4 Tons

Dehumidification w/ Reheat

- Introducing cold, saturated air directly into an occupied space may be too cool for occupant comfort
- Reheat can be used to bring the air to a space-neutral condition **Reheat Methods** AFinthalpy Wet Bulb Temp. (PF) **Electric Heat Outside Air** Specific Humidity Hot Water Coil Hot Gas Reheat Supply Air 10% -10

Dry Bulb Temp. (°F)

Cooling Process Example

Hot Gas Reheat

Energy Recovery

Traditional HVAC System

Why Energy Recovery?

ASHRAE Standard 62

"Ventilation for Acceptable Indoor Air Quality"

- Must supply fresh outdoor air to occupied spaces to minimize the potential for adverse health effects.
- Typical ventilation rates:
 - □ 15 CFM per person for Classrooms
 - □ 17 CFM per person for Offices

ASHRAE 90.1-2010

- Exhaust Air Energy Recovery (6.3.6)
 - □ Supply air is greater than 5000 CFM
 - □ 70% or more of supply is outdoor air (3500 CFM)
- Energy recovery system shall have a total effectiveness of greater than 50%

ASHRAE Climate Zones

ASHRAE 90.1-2010

Table 6.5.6.1 Energy Recovery Requirement (IP)

	% Outdoor Air at full design airflow rate (cfm)						
Zone	30% ≤ 40%	40% ≤ 50%	50% ≤ 60%	60% ≤ 70%	70% ≤ 80%	≥ 80%	
	Design Supply Fan airflow rate (cfm)						
3B, 3C, 4B, 4C, 5B	NR	NR	NR	NR	≥ 5000	≥ 5000	
1B, <mark>2B</mark> , 5C	NR	NR	≥ 26000	≥ 12000	≥ 5000	≥ 4000	
6B	≥ 11000	≥ 5500	≥ 4500	≥ 3500	≥ 2500	≥ 1500	
1A, <mark>2A, 3A, 4A,</mark> 5A, 6A	≥ 5500	≥ 4500	≥ 3500	≥ 2000	≥ 1000	≥ 0	
7, 8	≥ 2500	≥ 1000	≥ 0	≥ 0	≥ 0	≥ 0	

ASHRAE 189.1

"Standard for Design of High-Performance Green Buildings"

www.ashrae.org/greenstandard

Table 7.4.3.8 Energy Recovery Requirement (IP)

		% Outdoor Air at full design airflow rate (cfm)						
Zone	10% ≤ 20%	20% ≤ 30%	30% ≤ 40%	40% ≤ 50%	50% ≤ 60%	60% ≤ 70%	70% ≤ 80%	≥ 80%
		Design Supply Fan airflow rate (cfm)						
3B, 3C, 4B, 4C, 58	NR	NR	NR	NR	NR	NR	≥ 5000	≥ 5000
1B, <mark>2B</mark> , 50	NR	NR	NR	NR	≥ 26000	≥ 12000	≥ 5000	≥ 4000
6B	NR	≥ 22500	≥ 11000	≥ 5500	≥ 4500	≥ 3500	≥ 2500	≥ 1500
1A, 2A, 3A, 4A, 58, 6A	≥ 30000	≥ 13000	≥ 5500	≥ 4500	≥ 3500	≥ 2000	≥ 1000	≥ 0
7, 8	≥ 4000	≥ 3000	≥ 2500	≥ 1000	≥ 0	≥ 0	≥ 0	≥ 0

Energy Recovery Basic Terms

 <u>Sensible Energy Recovery</u> transfers only sensible energy (no moisture)

 \Box Also referred to as heat recovery

- <u>Total Energy Recovery</u> transfers both sensible and latent energy
- <u>Effectiveness</u> refers to the efficiency of the energy recovery device (expressed as a percentage)

□ Sensible effectiveness

□ Total effectiveness

Sensible Heat Recovery

- Sensible Heat Recovery
 - □ Aluminum fixed plate
 - \Box Run-around coils
 - Heat-pipe heat exchangers
 - Sensible wheels (no desiccant)
- Transfers sensible energy only (no moisture transfer)

Sensible Plate HRV

Sensible Energy Recovery

Sensible Energy recovery moves the outdoor air dry bulb temperature laterally 000 toward the room dry bulb 60% temperature Specific Humidity Outdoor Air Heat Exchangers Wat Bulb Temp. Room Air 10% Dry Bulb Temp.

Total Energy Recovery

- Total Energy Recovery
 - □ Enthalpy wheels
 - □ Enthalpy plates (or cores)
- Transfers sensible energy through the media
- Transfers latent energy through a desiccant (wheel) or molecular transfer (core)

Energy Recovery

Summer Operation w/ Rotary Wheel

Total Energy Recovery

Winter Operation

Supply Air

Dry Bulb 54°F Humidity 31 grains

Room Air

(to be exhausted) Dry Bulb 72°F Humidity 41 grains/lb.

> Outdoor Air Dry Bulb 0°F Humidity 2 grains/lb.

Exhaust Air

Dry Bulb 18°F Humidity 12 grains/lb.

Winter Operation Sensible vs. Total ERV

Energy Recovery and Frost

- Possibility of condensation forming whenever a warm, moist air stream comes in contact with a cold surface
- Always consider frost control methods in when winter design temps drop below 5°F

Winter Exhaust Air Process Sensible vs. Total ERV

Question?

Review

- Psychrometric Charts are useful tool for understanding HVAC processes
 - Easily find properties of air across numerous conditions
 - Allows us to plot, predict, and calculate the heating and cooling capacities
 - An understanding of psychrometrics is the foundation of energy recovery

THANK YOU!