CMGT 235 – Electrical and Mechanical Systems

Department of Construction Management ® California State University, Chico

Discussion No. 16 – Storm Drainage Systems Example Questions

Solution

- 1. Determine the number of roof drains required for ideal drainage for a roof area that is 200 ft x 1500 ft located in Reno, Nevada. Round drain number up to the next whole number.
 - A. Use the handout **Roof Drain to Roof Area Sizing Schedule**Calculate the Roof Area

```
Area = 200 ft x 1500 ft = 300,000 ft<sup>2</sup>
```

Rainfall = 2 inches per hour

Calculate the number of 5" Roof Drains

No. of Drains = $300,000 \text{ ft}^2 / 17300 = 17.3 = 18 \text{ drains}$

Calculate the Number of 8" Roof Drains

No. of Drains = $300,000 \text{ ft}^2 / 58\,000 = 5.17 = 6 \text{ drains}$

B. Use 2016 CPC Appendix D – Table D 101.1 and Table 1101.12

Rainfall = 1.2 inches per hour

Calculate the number of 5" Roof Drains

No. of Drains = $300,000 \text{ ft}^2 / 34\,600/1.2 = 10.4 = 11 \text{ drains}$

Calculate the Number of 8" Roof Drains

No. of Drains = $300,000 \text{ ft}^2 / 116 000/1.2 = 3.1 = 4 \text{ drains}$

2. For the BMP shown below answer the following:

What is the BMP called? Hydraulic Mulch
What BMP objectives does it address?
Soil Stabilization
Wind Erosion Control

What is the Standard Symbol used on site drawings? _

3. For the BMP shown below answer the following:

What is the BMP called? Compost Socks
What BMP objectives does it address?
Soil Stabilization

Sediment Control

What is the Standard Symbol used on site drawings?

4. Using the Web site <u>www.usclimatedata.com</u> complete the following:

City	Нарру Сатр
State	California
Total Annual Rainfall (inches)	51.41 inches
Average per month (inches)	4.3 inches
Highest Month (inches)	9.17

If rainfall is collected from a 5500 square foot roof determine the following: Average Volume of Runoff that can be Captured

```
V = 5500 \text{ ft}^2 \text{ x } 4.3 \text{ inches x } 1 \text{ ft } / 12 \text{ inches x } 0.9 \text{ x } 7.5 \text{ gal } / \text{ ft}^3

V = 13,303 \text{ gallons}
```

Highest Month Volume of Runoff that can be captured

```
V = 5500 \text{ ft}^2 \text{ x } 9.17 \text{ inches x } 1 \text{ ft } /12 \text{ inches x } 0.9 \text{ x } 7.5 \text{ gal } / \text{ ft}^3

V = 28,370 \text{ gallons}
```