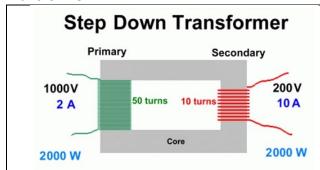

Electrical Equations

Unit 3 - Electrical Systems

AC Circuits

Single-Phase AC


The Watt's Law formulas for DC circuits also apply to single-phase (1ϕ) AC circuits containing only resistance.

If inductance or capacitive reactance puts the circuit out of phase, the power factor must be added to the basic power formula: $P = I \times E \times PF$

Three-Phase AC

The formula for a three-phase (3 ϕ) system includes another term called the "three-phase factor", which is a constant equal to the square root of 3, or 1.73. $P_{3\phi} = I \times E \times PF \times 1.73$

Transformer

$$E_S = E_P \times \frac{N_S}{N_P}$$

 N_p = number of turns of the primary N_S = number of turns of the secondary

Reactance Formulas

Inductor

$$X_{l} = 2\Pi f L (\Omega)$$

Where L is in Henrys

Capacitor

$$X_C = 1 / 2\Pi f C (\Omega)$$

Where C is in Farads

Impedance Formula

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

in Ohms (for series circuit)